Bibliography

[1]

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G S L Brandao, David A Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P Harrigan, Michael J Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S Humble, Sergei V Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C Platt, Chris Quintana, Eleanor G Rieffel, Pedram Roushan, Nicholas C Rubin, Daniel Sank, Kevin J Satzinger, Vadim Smelyanskiy, Kevin J Sung, Matthew D Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505–510, October 2019.

[2]

Eva Borbely. Grover search algorithm. 2007. arXiv:0705.4171.

[3]

Ophelia Crawford, Barnaby van Straaten, Daochen Wang, Thomas Parks, Earl Campbell, and Stephen Brierley. Efficient quantum measurement of pauli operators in the presence of finite sampling error. Quantum, 5:385, January 2021. URL: http://dx.doi.org/10.22331/q-2021-01-20-385, doi:10.22331/q-2021-01-20-385.

[4]

Pierre-Luc Dallaire-Demers, Jonathan Romero, Libor Veis, Sukin Sim, and Alán Aspuru-Guzik. Low-depth circuit ansatz for preparing correlated fermionic states on a quantum computer. 2018. arXiv:1801.01053.

[5]

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm. 2014. arXiv:1411.4028.

[6]

C. Figgatt, D. Maslov, K. A. Landsman, N. M. Linke, S. Debnath, and C. Monroe. Complete 3-qubit grover search on a programmable quantum computer. Nature Communications, dec 2017. URL: https://doi.org/10.1038%2Fs41467-017-01904-7, doi:10.1038/s41467-017-01904-7.

[7]

Pranav Gokhale, Olivia Angiuli, Yongshan Ding, Kaiwen Gui, Teague Tomesh, Martin Suchara, Margaret Martonosi, and Frederic T. Chong. Minimizing state preparations in variational quantum eigensolver by partitioning into commuting families. 2019. arXiv:1907.13623.

[8]

Gil Kalai, Yosef Rinott, and Tomer Shoham. Google's quantum supremacy claim: data, documentation, and discussion. 2023. arXiv:2210.12753.

[9]

Venkateswaran Kasirajan. 6.8.1 Modular Exponentiation, pages 262–264. Springer, 2021.

[10]

Venkateswaran Kasirajan. 7.2 Quantum Fourier Transformation, pages 272–286. Springer, 2021.

[11]

Venkateswaran Kasirajan. 7.4 The Bernstein–Vazirani Oracle, pages 297–302. Springer, 2021.

[12]

Venkateswaran Kasirajan. 7.5 Simon’s Algorithm, pages 302–309. Springer, 2021.

[13]

Venkateswaran Kasirajan. 7.7 Modular Exponentiation, pages 317–319. Springer, 2021.

[14]

Venkateswaran Kasirajan. 7.8 Grover’s Search Algorithm, pages 319–328. Springer, 2021.

[15]

Venkateswaran Kasirajan. 7.9 Shor’s Algorithm, pages 319–328. Springer, 2021.

[16]

Venkateswaran Kasirajan. Fig. 7.16 Block diagram for Bernstein–Vazirani algorithm, pages 298. Springer, 2021.

[17]

Venkateswaran Kasirajan. Fig. 7.17 4-Qubit Bernstein–Vazirani algorithm with a hidden string 1010b, pages 298. Springer, 2021.

[18]

Venkateswaran Kasirajan. Fig. 7.21 The Simon’s algorithm for the hidden string 011b, pages 306. Springer, 2021.

[19]

John M Martinis, Sergio Boixo, Hartmut Neven, Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak Biswas, Fernando G S L Brandao, David A Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P Harrigan, Michael J Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S Humble, Sergei V Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C Platt, Chris Quintana, Eleanor G Rieffel, Pedram Roushan, Nicholas C Rubin, Daniel Sank, Kevin J Satzinger, Vadim Smelyanskiy, Kevin J Sung, Matthew D Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z Jamie Yao, Ping Yeh, and Adam Zalcman. Quantum supremacy using a programmable superconducting processor. 2019.

[20]

Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, July 2014. URL: http://dx.doi.org/10.1038/ncomms5213, doi:10.1038/ncomms5213.

[21]

Lidia Ruiz-Perez and Juan Carlos Garcia-Escartin. Quantum arithmetic with the quantum fourier transform. Quantum Information Processing, apr 2017. URL: https://doi.org/10.1007%2Fs11128-017-1603-1, doi:10.1007/s11128-017-1603-1.

[22]

Sukin Sim, Peter D. Johnson, and Alán Aspuru‐Guzik. Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum‐classical algorithms. Advanced Quantum Technologies, October 2019. URL: http://dx.doi.org/10.1002/qute.201900070, doi:10.1002/qute.201900070.

[23]

Lieven M. K. Vandersypen, Matthias Steffen, Gregory Breyta, Costantino S. Yannoni, Mark H. Sherwood, and Isaac L. Chuang. Experimental realization of shor\textquotesingle s quantum factoring algorithm using nuclear magnetic resonance. Nature, 414(6866):883–887, dec 2001. URL: https://doi.org/10.1038%2F414883a, doi:10.1038/414883a.